Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey.

نویسندگان

  • Michael P Bowley
  • Howard Cabral
  • Douglas L Rosene
  • Alan Peters
چکیده

Aging is accompanied by deficits in cognitive function, which may be related to the vulnerability of myelinated nerve fibers to the normal process of aging. Loss of nerve fibers, together with age-related alterations in myelin sheath structure, may result in the inefficient and poorly coordinated conduction of neuronal signals. Until now, the ultrastructural analysis of cerebral white matter fiber tracts associated with frontal lobe areas critical in cognitive processing has been limited. In this study we analyzed the morphology and area number density of myelinated nerve fibers in the cingulate bundle and genu of the corpus callosum in behaviorally assessed young, middle aged, and old rhesus monkeys (Macaca mulatta). In both structures, normal aging results in a 20% decrease in the number of myelinated nerve fibers per unit area, while remaining nerve fibers exhibit an increasing frequency of degenerative changes in their myelin sheaths throughout middle and old age. Concomitantly, myelination continues in older monkeys, suggesting ongoing, albeit inadequate, reparative processes. Despite similar patterns of degeneration in both fiber tracts, only the age-related changes in the cingulate bundle correlate with declining cognitive function, underscoring its role as a critical corticocortical pathway linking the medial prefrontal, cingulate, and parahippocampal cortices in processes of working memory, recognition memory, and other higher cognitive faculties. These results further demonstrate the important role myelinated nerve fiber degeneration plays in the pathogenesis of age-related cognitive decline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical physics approach to quantifying differences in myelinated nerve fibers

We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross-sectional electron micro...

متن کامل

Myelin enhancement of Multiple sclerosis model with gold nanoparticles into the corpus callosum

Objective(s): With no substantial cost, we injected L-arginine into the rat’s corpus callosum (CC) to create animal model of multiple sclerosis (MS) and investigated the pre-injection effect of gold nanoparticles (GNPs). Materials and Methods: Adult male Wistar rat (250-300 g) was surgically cannulated at the CC, and after recovery it was injected L-arginine (3-200 µg/rat, intra-CC) once ...

متن کامل

Effects of age on the glial cells in the rhesus monkey optic nerve.

The optic nerve is a circumscribed white matter tract consisting of myelinated nerve fibers and neuroglial cells. Previous work has shown that during normal aging in the rhesus monkey, many optic nerves lose some of their nerve fibers, and in all old optic nerves there are both myelin abnormalities and degenerating nerve fibers. The present study assesses how the neuroglial cell population of t...

متن کامل

Quantitative analysis of the human corpus callosum under light microscopy

In recent years many workers have studied the morphology of the adult corpus callosum and controversy exists regarding genderand ageassociated differences. Callosal size may vary due to differences in the number and size of nerve fibers, glial cells and blood vessels. However, very little is known about the fiber composition of the human corpus callosum and how this might affect the length and ...

متن کامل

Frontal connections and cognitive changes in normal aging rhesus monkeys: a DTI study.

Recent anatomical studies have found that cortical neurons are mainly preserved during the aging process while myelin damage and even axonal loss is prominent throughout the forebrain. We used diffusion tensor imaging (DT-MRI) to evaluate the hypothesis that during the process of normal aging, white matter changes preferentially affect the integrity of long corticocortical association fiber tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 518 15  شماره 

صفحات  -

تاریخ انتشار 2010